Modelo de Cox-Ingersoll-Ross (CIR) Definición

Qué es el modelo Cox-Ingersoll-Ross (CIR)?

El modelo de Cox-Ingersoll-Ross (CIR) es una fórmula matemática utilizada para modelar los movimientos de los tipos de interés. El modelo CIR es un ejemplo de „modelo de un solo factor” porque describe los movimientos de los intereses como impulsados por una única fuente de riesgo de mercado. Se utiliza como método de previsión de los tipos de interés y se basa en una ecuación diferencial estocástica.

El modelo CIR fue desarrollado en 1985 por John C. Cox, Jonathan E. Ingersoll, y Stephen A. Ross como una ramificación del modelo de tipos de interés de Vasicek y puede utilizarse, entre otras cosas, para calcular los precios de los bonos y valorar los derivados de tipos de interés.

Puntos clave

  • El CIR se utiliza para predecir los tipos de interés y en los modelos de fijación de precios de los bonos.
  • El CIR es un modelo de equilibrio de un solo factor que utiliza un proceso de difusión de raíz cuadrada para garantizar que los tipos de interés calculados sean siempre no negativos.
  • El modelo CIR fue desarrollado en 1985 por John C. Cox, Jonathan E. Ingersoll, y Stephen A. Ross como derivación del modelo de tipos de interés de Vasicek.

Comprensión del modelo de Cox-Ingersoll-Ross (CIR)

El modelo CIR determina los movimientos de los tipos de interés como un producto de la volatilidad actual, el tipo medio y los diferenciales. A continuación, introduce un elemento de riesgo de mercado. El elemento de la raíz cuadrada no permite los tipos negativos y el modelo asume la reversión media hacia un nivel de tipos de interés normal a largo plazo.

Un modelo de tipos de interés es, esencialmente, una descripción probabilística de cómo pueden cambiar los tipos de interés a lo largo del tiempo. Los analistas que utilizan la teoría de las expectativas toman la información adquirida de los modelos de tipos de interés a corto plazo para prever con mayor precisión los tipos a largo plazo. Los inversores utilizan esta información sobre la variación de los tipos de interés a corto y largo plazo para protegerse del riesgo y la volatilidad del mercado.

Fórmula del modelo CIR

La ecuación del modelo CIR se expresa como sigue:

d r t = a ( b r t ) d t + σ r t d W t donde r t = Tipo de interés instantáneo en el momento t a = Tasa de reversión media b = Media del tipo de interés W t = Proceso de Wiener (variable aleatoria modelando el factor de riesgo de mercado) σ = Desviación estándar del tipo de interés (medida de la volatilidad) \begin {alineado}&dr_{t}=a(b-r_{t})\Ndt+sigma {{sqrt {r_{t}}, dW_{t}&\textbf{donde:} \\&rt = \text{Tipo de interés instantáneo en el momento} t \t&a = \text{Tasa de reversión a la media} \\\t&b = \text{Medio de la tasa de interés} \\\\️&W_t = \text{proceso de Wiener (variable aleatoria} \\️&|modelo del factor de riesgo del mercado)} \N&\Sigma = Texto de la desviación estándar del tipo de interés&\(medida de la volatilidad) drt=a(b-rt)dt+σrtdWtdonde:rt=Tipo de interés instantáneo en el momento ta=Tasa de reversión a la mediab=Media del tipo de interésWt=Proceso de Wiener (variable aleatoria que modela el factor de riesgo del mercado)σ=Desviación estándar del tipo de interés (medida de la volatilidad)

El modelo Cox-Ingersoll-Ross (CIR) frente a. El modelo de tipos de interés de Vasicek

Al igual que el modelo CIR, el modelo Vasicek también es un método de modelado de un solo factor. Sin embargo, el modelo Vasicek permite tipos de interés negativos, ya que no incluye un componente de raíz cuadrada.

Durante mucho tiempo se pensó que la incapacidad del modelo CIR para producir tasas negativas le daba una gran ventaja sobre el modelo Vasicek. Sin embargo, la aplicación de tipos negativos por parte de muchos bancos centrales en los últimos años ha hecho que se reconsidere esta postura.

Limitaciones del uso del modelo de Cox-Ingersoll-Ross (CIR)

Aunque los modelos de tipos de interés, como el modelo CIR, son una herramienta importante para las empresas financieras que intentan gestionar el riesgo y fijar el precio de productos financieros complicados, la aplicación real de estos modelos puede ser bastante difícil.

El modelo CIR, en particular, es muy sensible a los parámetros elegidos por el analista. Durante un periodo de baja volatilidad, el CIR puede ser un modelo increíblemente útil y preciso. Sin embargo, si el modelo se utiliza para predecir los tipos de interés durante un periodo de tiempo en el que la volatilidad se extiende más allá de los parámetros elegidos por el investigador, el CIR queda limitado en su alcance y fiabilidad.

Nuestro equipo exige a los redactores que utilicen fuentes primarias para respaldar su trabajo. Entre ellos se encuentran libros blancos, datos gubernamentales, informes originales y entrevistas con expertos del sector. También hacemos referencia a investigaciones originales de otras editoriales de renombre cuando es necesario. Puede obtener más información sobre las normas que seguimos para producir contenidos precisos e imparciales en nuestro
política editorial.

  1. Fondo Monetario Internacional. "Cómo pueden ser negativos los tipos de interés?" Accedido en agosto. 16, 2021.

Dodaj komentarz